7 resultados para benzene

em Universidad de Alicante


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gasoline coming from refinery fluid catalytic cracking (FCC) unit is a major contributor to the total commercial grade gasoline pool. The contents of the FCC gasoline are primarily paraffins, naphthenes, olefins, aromatics, and undesirables such as sulfur and sulfur containing compounds in low quantities. The proportions of these components in the FCC gasoline invariable determine its quality as well as the performance of the associated downstream units. The increasing demand for cleaner and lighter fuels significantly influences the need not only for novel processing technologies but also for alternative refinery and petrochemical feedstocks. Current and future clean gasoline requirements include increased isoparaffins contents, reduced olefin contents, reduced aromatics, reduced benzene, and reduced sulfur contents. The present study is aimed at investigating the effect of processing an unconventional refinery feedstock, composed of blend of vacuum gas oil (VGO) and low density polyethylene (LDPE) on FCC full range gasoline yields and compositional spectrum including its paraffins, isoparaffins, olefins, napthenes, and aromatics contents distribution within a range of operating variables of temperature (500–700 °C) and catalyst-feed oil ratio (CFR 5–10) using spent equilibrium FCC Y-zeolite based catalyst in a FCC pilot plant operated at the University of Alicante’s Research Institute of Chemical Process Engineering (RICPE). The coprocessing of the oil-polymer blend led to the production of gasoline with very similar yields and compositions as those obtained from the base oil, albeit, in some cases, the contribution of the feed polymer content as well as the processing variables on the gasoline compositional spectrum were appreciated. Carbon content analysis showed a higher fraction of the C9–C12 compounds at all catalyst rates employed and for both feedstocks. The gasoline’s paraffinicity, olefinicity, and degrees of branching of the paraffins and olefins were also affected in various degrees by the scale of operating severity. In the majority of the cases, the gasoline aromatics tended toward the decrease as the reactor temperature was increased. While the paraffins and iso-paraffins gasoline contents were relatively stable at around 5 % wt, the olefin contents on the other hand generally increased with increase in the FCC reactor temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Do polyacenes, circumacenes, periacenes, nanographenes, and graphene nanoribbons show a spin polarized ground state? In this work, we present monodeterminantal (Hartree–Fock (HF) and density functional theory (DFT) types), and multideterminantal calculations (Møller–Plesset and Coupled Cluster), for several families of unsaturated organic molecules (n-Acenes, n-Periacenes and n-Circumacenes). All HF calculations and many DFT show a spin-polarized (antiferromagnetic) ground state, in agreement with previous calculations. Nevertheless, the multideterminantal calculations, carried out with perturbative and variational wavefunctions, show that the more stable state is obtained starting from the unpolarized HF wavefunction. The trend of the stabilization of wavefunctions (polarized or unpolarized) with respect to exchange and correlation potentials, and to the number of benzene rings, has been analyzed. A study of the spin (〈Ŝ2〉) and the spin density on the carbon atoms has also been carried out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anodic oxidation of 1-(trifluoromethyl)benzene in dry acetonitrile/Bu4NBF4 under constant potential conditions led to 2-(trifluoromethyl) acetanilide in 86% yield. Other experimental conditions, as the use of constant current or the change in the supporting electrolyte were considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon molecular sieve membranes have been analyzed in supported and unsupported configurations in this experimental study. The membranes were used to adsorb CO2, N2 and CH4, and their adsorption data were analyzed to establish differences in rate and capacity of adsorption between the two types of samples (supported and unsupported). Experimental results show an important effect of the support, which can be considered as an additional parameter to tailor pore size on these carbon membranes. Immersion calorimetry values were measured by immersing the membranes into liquids of different molecular dimensions (dichloromethane, benzene, n-hexane, 2,2-dimethylbutane). Similarities were found between adsorption and calorimetric analysis. The pore volume of the samples analyzed ranged from 0.016 to 0.263 cm3/g. The effect of the pyrolysis temperature, either 550 or 700 °C, under N2 atmosphere was also analyzed. Quantification of the pore-size distribution of the support was done by liquid-liquid displacement porosimetry. The composite membrane was used for CO2/CH4 separation before and after pore plugging was done. The ideal selectivity factors value (4.47) was over the Knudsen theoretical factor (0.60) for membrane pyrolyzed at 600 °C, which indicates the potential application of these membranes for the separation of low-molecular weight gases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The constant increase in the production of electronic devices implies the need for an appropriate management of a growing number of waste electrical and electronic equipment. Thermal treatments represent an interesting alternative to recycle this kind of waste, but particular attention has to be paid to the potential emissions of toxic by-products. In this study, the emissions from thermal degradation of printed circuit boards (with and without metals) have been studied using a laboratory scale reactor, under oxidizing and inert atmosphere at 600 and 850 °C. Apart from carbon oxides, HBr was the main decomposition product, followed by high amounts of methane, ethylene, propylene, phenol and benzene. The maximum formation of PAHs was found in pyrolysis at 850 °C, naphthalene being the most abundant. High levels of 2-, 4-, 2,4-, 2,6- and 2,4,6-bromophenols were found, especially at 600 °C. Emissions of PCDD/Fs and dioxin-like PCBs were quite low and much lower than that of PBDD/Fs, due to the higher bromine content of the samples. Combustion at 600 °C was the run with the highest PBDD/F formation: the total content of eleven 2,3,7,8-substituted congeners (tetra- through heptaBDD/Fs) was 7240 and 3250 ng WHO2005-TEQ/kg sample, corresponding to the sample with and without metals, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A united atom force field is empirically derived by minimizing the difference between experimental and simulated crystal cells and melting temperatures for eight compounds representative of organic electronic materials used in OLEDs and other devices: biphenyl, carbazole, fluorene, 9,9′-(1,3-phenylene)bis(9H-carbazole)-1,3-bis(N-carbazolyl)benzene (mCP), 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (pCBP), phenazine, phenylcarbazole, and triphenylamine. The force field is verified against dispersion-corrected DFT calculations and shown to also successfully reproduce the crystal structure for two larger compounds employed as hosts in phosphorescent and thermally activated delayed fluorescence OLEDs: N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPD), and 1,3,5-tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl (TPBI). The good performances of the force field coupled to the large computational savings granted by the united atom approximation make it an ideal choice for the simulation of the morphology of emissive layers for OLED materials in crystalline or glassy phases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesoporous titania–organosilica nanoparticles comprised of anatase nanocrystals crosslinked with organosilica moieties have been prepared by direct co-condensation of a titania precursor, tetrabuthylortotitanate (TBOT), with two organosilica precursors, 1,4-bis(triethoxysilyl) benzene (BTEB) and 1,2-bis(triethoxysilyl) ethane (BTEE), in mild conditions and in the absence of surfactant. These hybrid materials show both high surface areas (200–360 m2 g−1) and pore volumes (0.3 cm3 g−1) even after calcination, and excellent photoactivity in the degradation of rhodamine 6G and in the partial oxidation of propene under UV irradiation, especially after the calcination of the samples. During calcination, there is a change in the TiIV coordination and an increase in the content of Si[BOND]O[BOND]Ti moieties in comparison with the uncalcined materials, which seems to be responsible for the enhanced photocatalytic activity of hybrid titania–silica materials as compared to both uncalcined samples and the control TiO2.